Multi-antenna Systems
\rightarrow Multiple receive antennas
\rightarrow Multiple transmit antennas
\rightarrow MIM
\rightarrow Mulling $\underset{\text { Alignment. }}{\rightarrow} \in\left[\begin{array}{l}\text { Interference } \\ \text { Management }\end{array}\right]$

Receiver Diversity

(1) Decode both streams and compare.
(2) Add these two received signals.

$$
\begin{array}{r}
y_{1}+y_{2}=\left(h_{1}+h_{2}\right) x+\left(n_{1}+n_{2}\right) \\
\text { complex } \\
\text { high risk } \rightarrow \text { aligned } \rightarrow \text { strong. } \\
(1+1,-1) \\
\text { anti-aligned } \rightarrow \text { weak }
\end{array}
$$

$\left.\left[\alpha_{1}\right]_{\frac{1}{1}}^{y_{1}}+\left[\alpha_{2}\right]_{\frac{y_{2}}{h_{2}}}\right)$
is maximized
Maximal ratio combining

$$
\alpha_{1}=h_{1}^{*} \quad \alpha_{2}=h_{2}^{*}
$$

ζ make the prose neg tire.

$$
\begin{aligned}
& \alpha_{1} y_{1}=h_{1}^{*} h_{1} x_{k}+h_{1}^{*} n_{1} \\
& =\left|h_{1}\right|^{2} x_{k}+h_{1}^{*} n_{1} \\
& \alpha_{2} y_{2}=h_{2}^{*} h_{2} x_{7}+h_{2}^{*} n_{2} \\
& \begin{aligned}
& \alpha_{1} y_{1}+\alpha_{2} y_{2}=\left(\left|h_{1}\right|^{2}\right. \\
&\left.\quad+\left|h_{2}\right|^{2}\right) x \\
& \quad+h_{2}^{*} n_{2}+h_{1}^{*} n_{1}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{r}
S N R=\frac{S}{\left.N E\left(\left.h_{1}\right|^{2}+\left(h_{2}\right)^{2}\right) k_{2}\right)^{2}}=\left(h_{2}^{*} n_{2}+h_{1}^{*} n_{1}\right)^{2}
\end{array}
$$

Bifor: $\frac{\left|h_{1}\right|^{2} x^{2}}{n_{1}^{2}}$
Affor

$$
\left.\begin{array}{ll}
\text { complew } \\
(0,1) n_{2} & n_{1}+n_{2} \\
\text { mes sti } & \left(n_{1}+n_{2}\right)^{2}<0
\end{array}<4\right\} L_{0}
$$

$$
\begin{aligned}
& S^{\operatorname{SN}} R_{\text {oftor }}=\frac{\left(\left|h_{1}\right|^{2}+\left(\left.h_{2}\right|^{2}\right) x^{2}\right.}{\left.\left(h_{1}\right)^{2}+\left(h_{2}\right)^{2} T\right)^{2}} \\
& =\frac{\left.\left(h_{1}\right)^{2}+\left(h_{2}\right)^{2}\right) x^{2}}{n^{2}}
\end{aligned}
$$

(1) $\left|h_{1}\right|^{2} \approx\left|h_{2}\right|^{2} ; \quad 2^{\downarrow}$
(2) $\left|h_{1}\right|^{2} \gg\left|h_{2}\right|^{2}$, not much
(3) $\left|h_{1}\right|^{2} \ll\left|h_{2}\right|^{2}$, , lot advantoare

Transmitter Diversity

Ophions:

$$
\begin{aligned}
& \longrightarrow x_{1}=x_{2}=x \\
& y=\left(h_{1}+h_{2}\right) x+n . \\
& y= \alpha_{1} h_{1} x+\alpha_{2} h_{2} x+n \\
&= \underbrace{\infty}_{\left(\alpha_{1} h_{1}+\alpha_{2} h_{2}\right) x+n} \underbrace{}_{2}=h_{2}^{*} \\
&\left.\alpha_{1}=h_{1}^{*} \quad\left(\left|h_{1}\right|^{2}+\mid h_{2}\right)^{2}\right) x+n \\
& y=
\end{aligned}
$$

"precoding"

Rule of Themb \rightarrow

$$
\lambda_{2}^{\lambda} \text { oway } \rightarrow \begin{gathered}
d r f f e r e n t \\
\text { chonmels }
\end{gathered}
$$

$$
\begin{aligned}
& \alpha_{1}=\frac{h_{1}^{*}}{\sqrt{\left(h_{1}\right)^{2}+\left(h_{2}\right)^{2}}} \\
& \alpha_{2}=\frac{h_{2}^{*}}{\sqrt{\left|h_{1}\right|^{2}+\left.h_{2}\right|^{*}}} \\
& \text { Cnormalyzion } \\
& \alpha_{1}{ }^{2}+\alpha_{2}{ }^{2}=1 \\
& y=\left(\frac{\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}}{\sqrt{\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}}}\right) x+n \\
& S N R=\frac{\left(\left|h_{1}\right|^{2}+\left(h_{2}\right)^{2}\right)^{x}}{\left(\left.h_{1}\right|^{2}+1 h_{2}+t^{2}\right)} \frac{x^{2}}{n^{2}} \\
& \frac{S N R_{\text {after }}}{S N R_{\text {befor }}}=\frac{\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}}{\left|h_{1}\right|^{2}}
\end{aligned}
$$

Transmittor needs to know the Chonnel.

Space-time Codes Alamout
"I don't want
 chonrel feedsact
$\begin{array}{ll}1 \\ x_{1} & x_{2}^{*} \\ x_{2} & -x_{i}^{*}\end{array}$ spred out the sameinfo in space etor

$$
\left.\begin{array}{l}
x_{2} \\
y_{1}=h_{1} x_{1}+h_{2} x_{2}+n \\
y_{2}=h_{1} 1_{2}^{*}-h_{2} x_{1}^{*}+n
\end{array}\right]
$$

$$
\begin{aligned}
& y_{2}=h_{1} 1_{2}^{*}-h_{2}^{x_{1}} \\
& \left.h_{1}^{*} y_{1}-h_{2} y_{2}^{*}=\frac{h_{1}^{*} h_{1} x_{1}+h_{1}^{*} / h_{2} x_{2}}{-h_{2} h_{1}^{*} x_{2}}+h_{2}^{*} h_{2}\right)
\end{aligned}
$$

$h_{i j} \leftarrow$ channel from thant i to
 meant j

$$
\begin{aligned}
& y_{1}=h_{11} x_{1}+h_{21} x_{2}+n_{1} \\
& y_{2}=\bar{h}_{12} x_{1}+h_{22} x_{2}+n_{2} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{21} \\
h_{12} & h_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right]} \\
& \vec{y}=H \vec{x}+\vec{n} \\
& T \text { need to know this. }
\end{aligned}
$$

T, this

$$
\begin{aligned}
& H^{-1} \vec{y}=H^{-1} H \vec{x}+a H^{-1} \vec{n} \\
& H^{-1} \vec{y}=\vec{x}+H^{+} \vec{n}
\end{aligned}
$$

H^{-1} to be reasonable, H to be inverstible.

$$
\begin{aligned}
& \underset{\Gamma_{\times 1}}{\vec{y}}=\underset{5 \times 5}{H} \overrightarrow{V_{5 \times 1}}+\vec{n} \\
& \vec{y}_{5 \times 1}=H_{5 \times 2} \vec{x}_{2 \times 1}+\vec{n}^{2}
\end{aligned}
$$

2 dota strems at $R x$ the same trin T_{x} smaller number of antinnos.

$$
\begin{aligned}
& \vec{y}_{3 \times 1}=H_{3 \times 3} 3_{3 \times 1}+\bar{n} \\
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \underbrace{\text { Send } \rightarrow H^{-1} \vec{x}}_{[\text {zero-forcing. }}=H^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& \vec{y}=\underbrace{H H^{-1}} \bar{x}+n \\
& \bar{y}=\bar{x}+n \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right]}
\end{aligned}
$$

Diversity vs Multhplexing

Datarake $\alpha B \omega \log (S N R)$

low SNR \rightarrow diversity, SNRT, dotarakTT
high SNR \rightarrow multiplexing, 2Xthe throughput

Rate adoptation.
MCS table
Modulation and coding

Nulling

Alignment

